Copied to
clipboard

G = C62.12D4order 288 = 25·32

12nd non-split extension by C62 of D4 acting faithfully

non-abelian, soluble, monomial

Aliases: C62.12D4, C32⋊D84C2, C22.5S3≀C2, D6.4D61C2, C322(C8⋊C22), C3⋊Dic3.30D4, D6⋊S32C22, C62.C41C2, C322C82C22, C322Q82C22, C322SD165C2, C3⋊Dic3.8C23, C2.17(C2×S3≀C2), (C3×C6).17(C2×D4), (C2×D6⋊S3)⋊12C2, (C2×C3⋊Dic3).95C22, SmallGroup(288,884)

Series: Derived Chief Lower central Upper central

C1C32C3⋊Dic3 — C62.12D4
C1C32C3×C6C3⋊Dic3D6⋊S3C32⋊D8 — C62.12D4
C32C3×C6C3⋊Dic3 — C62.12D4
C1C2C22

Generators and relations for C62.12D4
 G = < a,b,c,d | a6=b6=d2=1, c4=b3, ab=ba, cac-1=a3b, dad=a-1, cbc-1=a2b3, bd=db, dcd=b3c3 >

Subgroups: 592 in 115 conjugacy classes, 23 normal (15 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C8, C2×C4, D4, Q8, C23, C32, Dic3, C12, D6, C2×C6, M4(2), D8, SD16, C2×D4, C4○D4, C3×S3, C3×C6, C3×C6, Dic6, C4×S3, C2×Dic3, C3⋊D4, C3×D4, C22×S3, C22×C6, C8⋊C22, C3×Dic3, C3⋊Dic3, S3×C6, C62, D42S3, C2×C3⋊D4, C322C8, S3×Dic3, D6⋊S3, D6⋊S3, D6⋊S3, C322Q8, C3×C3⋊D4, C2×C3⋊Dic3, S3×C2×C6, C32⋊D8, C322SD16, C62.C4, D6.4D6, C2×D6⋊S3, C62.12D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C8⋊C22, S3≀C2, C2×S3≀C2, C62.12D4

Character table of C62.12D4

 class 12A2B2C2D2E3A3B4A4B4C6A6B6C6D6E6F6G6H6I6J8A8B12
 size 11212121244121818444481212121224363624
ρ1111111111111111111111111    trivial
ρ211-111-111-11-1-1-111-1-11-111-11-1    linear of order 2
ρ31111-1-11111111111-1-1-1-11-1-11    linear of order 2
ρ411-11-1111-11-1-1-111-11-11-111-1-1    linear of order 2
ρ511-1-1-111111-1-1-111-11-11-1-1-111    linear of order 2
ρ6111-1-1-111-11111111-1-1-1-1-111-1    linear of order 2
ρ711-1-11-11111-1-1-111-1-11-11-11-11    linear of order 2
ρ8111-11111-111111111111-1-1-1-1    linear of order 2
ρ922-2000220-22-2-222-200000000    orthogonal lifted from D4
ρ10222000220-2-22222200000000    orthogonal lifted from D4
ρ1144-402-2-21000-1-11-221-11-10000    orthogonal lifted from C2×S3≀C2
ρ12444022-21000111-2-2-1-1-1-10000    orthogonal lifted from S3≀C2
ρ134-400004400000-4-4000000000    orthogonal lifted from C8⋊C22
ρ1444-40-22-21000-1-11-22-11-110000    orthogonal lifted from C2×S3≀C2
ρ1544-4-2001-220022-21-10000100-1    orthogonal lifted from C2×S3≀C2
ρ1644-42001-2-20022-21-10000-1001    orthogonal lifted from C2×S3≀C2
ρ174442001-2200-2-2-2110000-100-1    orthogonal lifted from S3≀C2
ρ18444-2001-2-200-2-2-21100001001    orthogonal lifted from S3≀C2
ρ194440-2-2-21000111-2-211110000    orthogonal lifted from S3≀C2
ρ204-40000-210003-3-120-3--3--3-30000    complex faithful
ρ214-40000-210003-3-120--3-3-3--30000    complex faithful
ρ224-40000-21000-33-120--3--3-3-30000    complex faithful
ρ234-40000-21000-33-120-3-3--3--30000    complex faithful
ρ248-800002-4000004-2000000000    symplectic faithful, Schur index 2

Permutation representations of C62.12D4
On 24 points - transitive group 24T601
Generators in S24
(1 5)(2 18 11)(3 7)(4 13 20)(6 22 15)(8 9 24)(10 14)(12 16)(17 21)(19 23)
(1 21 10 5 17 14)(2 6)(3 16 19 7 12 23)(4 8)(9 13)(11 15)(18 22)(20 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 8)(3 7)(4 6)(9 11)(12 16)(13 15)(18 24)(19 23)(20 22)

G:=sub<Sym(24)| (1,5)(2,18,11)(3,7)(4,13,20)(6,22,15)(8,9,24)(10,14)(12,16)(17,21)(19,23), (1,21,10,5,17,14)(2,6)(3,16,19,7,12,23)(4,8)(9,13)(11,15)(18,22)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(18,24)(19,23)(20,22)>;

G:=Group( (1,5)(2,18,11)(3,7)(4,13,20)(6,22,15)(8,9,24)(10,14)(12,16)(17,21)(19,23), (1,21,10,5,17,14)(2,6)(3,16,19,7,12,23)(4,8)(9,13)(11,15)(18,22)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(18,24)(19,23)(20,22) );

G=PermutationGroup([[(1,5),(2,18,11),(3,7),(4,13,20),(6,22,15),(8,9,24),(10,14),(12,16),(17,21),(19,23)], [(1,21,10,5,17,14),(2,6),(3,16,19,7,12,23),(4,8),(9,13),(11,15),(18,22),(20,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,8),(3,7),(4,6),(9,11),(12,16),(13,15),(18,24),(19,23),(20,22)]])

G:=TransitiveGroup(24,601);

On 24 points - transitive group 24T603
Generators in S24
(1 14 24 5 10 20)(3 22 12 7 18 16)
(1 5)(2 21 11 6 17 15)(3 7)(4 9 19 8 13 23)(10 14)(12 16)(18 22)(20 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 8)(3 7)(4 6)(9 17)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)

G:=sub<Sym(24)| (1,14,24,5,10,20)(3,22,12,7,18,16), (1,5)(2,21,11,6,17,15)(3,7)(4,9,19,8,13,23)(10,14)(12,16)(18,22)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,17)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)>;

G:=Group( (1,14,24,5,10,20)(3,22,12,7,18,16), (1,5)(2,21,11,6,17,15)(3,7)(4,9,19,8,13,23)(10,14)(12,16)(18,22)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,17)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18) );

G=PermutationGroup([[(1,14,24,5,10,20),(3,22,12,7,18,16)], [(1,5),(2,21,11,6,17,15),(3,7),(4,9,19,8,13,23),(10,14),(12,16),(18,22),(20,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,8),(3,7),(4,6),(9,17),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18)]])

G:=TransitiveGroup(24,603);

Matrix representation of C62.12D4 in GL4(𝔽7) generated by

0115
6542
4406
0006
,
2424
4254
0060
0003
,
6435
6630
2566
2253
,
1045
0155
0060
0006
G:=sub<GL(4,GF(7))| [0,6,4,0,1,5,4,0,1,4,0,0,5,2,6,6],[2,4,0,0,4,2,0,0,2,5,6,0,4,4,0,3],[6,6,2,2,4,6,5,2,3,3,6,5,5,0,6,3],[1,0,0,0,0,1,0,0,4,5,6,0,5,5,0,6] >;

C62.12D4 in GAP, Magma, Sage, TeX

C_6^2._{12}D_4
% in TeX

G:=Group("C6^2.12D4");
// GroupNames label

G:=SmallGroup(288,884);
// by ID

G=gap.SmallGroup(288,884);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,141,219,675,346,80,2693,2028,362,797,1203]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=d^2=1,c^4=b^3,a*b=b*a,c*a*c^-1=a^3*b,d*a*d=a^-1,c*b*c^-1=a^2*b^3,b*d=d*b,d*c*d=b^3*c^3>;
// generators/relations

Export

Character table of C62.12D4 in TeX

׿
×
𝔽