non-abelian, soluble, monomial
Aliases: C62.12D4, C32⋊D8⋊4C2, C22.5S3≀C2, D6.4D6⋊1C2, C32⋊2(C8⋊C22), C3⋊Dic3.30D4, D6⋊S3⋊2C22, C62.C4⋊1C2, C32⋊2C8⋊2C22, C32⋊2Q8⋊2C22, C32⋊2SD16⋊5C2, C3⋊Dic3.8C23, C2.17(C2×S3≀C2), (C3×C6).17(C2×D4), (C2×D6⋊S3)⋊12C2, (C2×C3⋊Dic3).95C22, SmallGroup(288,884)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊Dic3 — C62.12D4 |
C1 — C32 — C3×C6 — C3⋊Dic3 — D6⋊S3 — C32⋊D8 — C62.12D4 |
C32 — C3×C6 — C3⋊Dic3 — C62.12D4 |
Generators and relations for C62.12D4
G = < a,b,c,d | a6=b6=d2=1, c4=b3, ab=ba, cac-1=a3b, dad=a-1, cbc-1=a2b3, bd=db, dcd=b3c3 >
Subgroups: 592 in 115 conjugacy classes, 23 normal (15 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C8, C2×C4, D4, Q8, C23, C32, Dic3, C12, D6, C2×C6, M4(2), D8, SD16, C2×D4, C4○D4, C3×S3, C3×C6, C3×C6, Dic6, C4×S3, C2×Dic3, C3⋊D4, C3×D4, C22×S3, C22×C6, C8⋊C22, C3×Dic3, C3⋊Dic3, S3×C6, C62, D4⋊2S3, C2×C3⋊D4, C32⋊2C8, S3×Dic3, D6⋊S3, D6⋊S3, D6⋊S3, C32⋊2Q8, C3×C3⋊D4, C2×C3⋊Dic3, S3×C2×C6, C32⋊D8, C32⋊2SD16, C62.C4, D6.4D6, C2×D6⋊S3, C62.12D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C8⋊C22, S3≀C2, C2×S3≀C2, C62.12D4
Character table of C62.12D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 8A | 8B | 12 | |
size | 1 | 1 | 2 | 12 | 12 | 12 | 4 | 4 | 12 | 18 | 18 | 4 | 4 | 4 | 4 | 8 | 12 | 12 | 12 | 12 | 24 | 36 | 36 | 24 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | -2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | -4 | 0 | 2 | -2 | -2 | 1 | 0 | 0 | 0 | -1 | -1 | 1 | -2 | 2 | 1 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S3≀C2 |
ρ12 | 4 | 4 | 4 | 0 | 2 | 2 | -2 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | -2 | -2 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ13 | 4 | -4 | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ14 | 4 | 4 | -4 | 0 | -2 | 2 | -2 | 1 | 0 | 0 | 0 | -1 | -1 | 1 | -2 | 2 | -1 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S3≀C2 |
ρ15 | 4 | 4 | -4 | -2 | 0 | 0 | 1 | -2 | 2 | 0 | 0 | 2 | 2 | -2 | 1 | -1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | -1 | orthogonal lifted from C2×S3≀C2 |
ρ16 | 4 | 4 | -4 | 2 | 0 | 0 | 1 | -2 | -2 | 0 | 0 | 2 | 2 | -2 | 1 | -1 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | orthogonal lifted from C2×S3≀C2 |
ρ17 | 4 | 4 | 4 | 2 | 0 | 0 | 1 | -2 | 2 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | orthogonal lifted from S3≀C2 |
ρ18 | 4 | 4 | 4 | -2 | 0 | 0 | 1 | -2 | -2 | 0 | 0 | -2 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | orthogonal lifted from S3≀C2 |
ρ19 | 4 | 4 | 4 | 0 | -2 | -2 | -2 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | -2 | -2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 3 | -3 | -1 | 2 | 0 | √-3 | -√-3 | -√-3 | √-3 | 0 | 0 | 0 | 0 | complex faithful |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 3 | -3 | -1 | 2 | 0 | -√-3 | √-3 | √-3 | -√-3 | 0 | 0 | 0 | 0 | complex faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | -3 | 3 | -1 | 2 | 0 | -√-3 | -√-3 | √-3 | √-3 | 0 | 0 | 0 | 0 | complex faithful |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | -3 | 3 | -1 | 2 | 0 | √-3 | √-3 | -√-3 | -√-3 | 0 | 0 | 0 | 0 | complex faithful |
ρ24 | 8 | -8 | 0 | 0 | 0 | 0 | 2 | -4 | 0 | 0 | 0 | 0 | 0 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 5)(2 18 11)(3 7)(4 13 20)(6 22 15)(8 9 24)(10 14)(12 16)(17 21)(19 23)
(1 21 10 5 17 14)(2 6)(3 16 19 7 12 23)(4 8)(9 13)(11 15)(18 22)(20 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 8)(3 7)(4 6)(9 11)(12 16)(13 15)(18 24)(19 23)(20 22)
G:=sub<Sym(24)| (1,5)(2,18,11)(3,7)(4,13,20)(6,22,15)(8,9,24)(10,14)(12,16)(17,21)(19,23), (1,21,10,5,17,14)(2,6)(3,16,19,7,12,23)(4,8)(9,13)(11,15)(18,22)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(18,24)(19,23)(20,22)>;
G:=Group( (1,5)(2,18,11)(3,7)(4,13,20)(6,22,15)(8,9,24)(10,14)(12,16)(17,21)(19,23), (1,21,10,5,17,14)(2,6)(3,16,19,7,12,23)(4,8)(9,13)(11,15)(18,22)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(18,24)(19,23)(20,22) );
G=PermutationGroup([[(1,5),(2,18,11),(3,7),(4,13,20),(6,22,15),(8,9,24),(10,14),(12,16),(17,21),(19,23)], [(1,21,10,5,17,14),(2,6),(3,16,19,7,12,23),(4,8),(9,13),(11,15),(18,22),(20,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,8),(3,7),(4,6),(9,11),(12,16),(13,15),(18,24),(19,23),(20,22)]])
G:=TransitiveGroup(24,601);
(1 14 24 5 10 20)(3 22 12 7 18 16)
(1 5)(2 21 11 6 17 15)(3 7)(4 9 19 8 13 23)(10 14)(12 16)(18 22)(20 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 8)(3 7)(4 6)(9 17)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)
G:=sub<Sym(24)| (1,14,24,5,10,20)(3,22,12,7,18,16), (1,5)(2,21,11,6,17,15)(3,7)(4,9,19,8,13,23)(10,14)(12,16)(18,22)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,17)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)>;
G:=Group( (1,14,24,5,10,20)(3,22,12,7,18,16), (1,5)(2,21,11,6,17,15)(3,7)(4,9,19,8,13,23)(10,14)(12,16)(18,22)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,17)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18) );
G=PermutationGroup([[(1,14,24,5,10,20),(3,22,12,7,18,16)], [(1,5),(2,21,11,6,17,15),(3,7),(4,9,19,8,13,23),(10,14),(12,16),(18,22),(20,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,8),(3,7),(4,6),(9,17),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18)]])
G:=TransitiveGroup(24,603);
Matrix representation of C62.12D4 ►in GL4(𝔽7) generated by
0 | 1 | 1 | 5 |
6 | 5 | 4 | 2 |
4 | 4 | 0 | 6 |
0 | 0 | 0 | 6 |
2 | 4 | 2 | 4 |
4 | 2 | 5 | 4 |
0 | 0 | 6 | 0 |
0 | 0 | 0 | 3 |
6 | 4 | 3 | 5 |
6 | 6 | 3 | 0 |
2 | 5 | 6 | 6 |
2 | 2 | 5 | 3 |
1 | 0 | 4 | 5 |
0 | 1 | 5 | 5 |
0 | 0 | 6 | 0 |
0 | 0 | 0 | 6 |
G:=sub<GL(4,GF(7))| [0,6,4,0,1,5,4,0,1,4,0,0,5,2,6,6],[2,4,0,0,4,2,0,0,2,5,6,0,4,4,0,3],[6,6,2,2,4,6,5,2,3,3,6,5,5,0,6,3],[1,0,0,0,0,1,0,0,4,5,6,0,5,5,0,6] >;
C62.12D4 in GAP, Magma, Sage, TeX
C_6^2._{12}D_4
% in TeX
G:=Group("C6^2.12D4");
// GroupNames label
G:=SmallGroup(288,884);
// by ID
G=gap.SmallGroup(288,884);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,141,219,675,346,80,2693,2028,362,797,1203]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^6=d^2=1,c^4=b^3,a*b=b*a,c*a*c^-1=a^3*b,d*a*d=a^-1,c*b*c^-1=a^2*b^3,b*d=d*b,d*c*d=b^3*c^3>;
// generators/relations
Export