Copied to
clipboard

G = C62.12D4order 288 = 25·32

12nd non-split extension by C62 of D4 acting faithfully

non-abelian, soluble, monomial

Aliases: C62.12D4, C32:D8:4C2, C22.5S3wrC2, D6.4D6:1C2, C32:2(C8:C22), C3:Dic3.30D4, D6:S3:2C22, C62.C4:1C2, C32:2C8:2C22, C32:2Q8:2C22, C32:2SD16:5C2, C3:Dic3.8C23, C2.17(C2xS3wrC2), (C3xC6).17(C2xD4), (C2xD6:S3):12C2, (C2xC3:Dic3).95C22, SmallGroup(288,884)

Series: Derived Chief Lower central Upper central

C1C32C3:Dic3 — C62.12D4
C1C32C3xC6C3:Dic3D6:S3C32:D8 — C62.12D4
C32C3xC6C3:Dic3 — C62.12D4
C1C2C22

Generators and relations for C62.12D4
 G = < a,b,c,d | a6=b6=d2=1, c4=b3, ab=ba, cac-1=a3b, dad=a-1, cbc-1=a2b3, bd=db, dcd=b3c3 >

Subgroups: 592 in 115 conjugacy classes, 23 normal (15 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C8, C2xC4, D4, Q8, C23, C32, Dic3, C12, D6, C2xC6, M4(2), D8, SD16, C2xD4, C4oD4, C3xS3, C3xC6, C3xC6, Dic6, C4xS3, C2xDic3, C3:D4, C3xD4, C22xS3, C22xC6, C8:C22, C3xDic3, C3:Dic3, S3xC6, C62, D4:2S3, C2xC3:D4, C32:2C8, S3xDic3, D6:S3, D6:S3, D6:S3, C32:2Q8, C3xC3:D4, C2xC3:Dic3, S3xC2xC6, C32:D8, C32:2SD16, C62.C4, D6.4D6, C2xD6:S3, C62.12D4
Quotients: C1, C2, C22, D4, C23, C2xD4, C8:C22, S3wrC2, C2xS3wrC2, C62.12D4

Character table of C62.12D4

 class 12A2B2C2D2E3A3B4A4B4C6A6B6C6D6E6F6G6H6I6J8A8B12
 size 11212121244121818444481212121224363624
ρ1111111111111111111111111    trivial
ρ211-111-111-11-1-1-111-1-11-111-11-1    linear of order 2
ρ31111-1-11111111111-1-1-1-11-1-11    linear of order 2
ρ411-11-1111-11-1-1-111-11-11-111-1-1    linear of order 2
ρ511-1-1-111111-1-1-111-11-11-1-1-111    linear of order 2
ρ6111-1-1-111-11111111-1-1-1-1-111-1    linear of order 2
ρ711-1-11-11111-1-1-111-1-11-11-11-11    linear of order 2
ρ8111-11111-111111111111-1-1-1-1    linear of order 2
ρ922-2000220-22-2-222-200000000    orthogonal lifted from D4
ρ10222000220-2-22222200000000    orthogonal lifted from D4
ρ1144-402-2-21000-1-11-221-11-10000    orthogonal lifted from C2xS3wrC2
ρ12444022-21000111-2-2-1-1-1-10000    orthogonal lifted from S3wrC2
ρ134-400004400000-4-4000000000    orthogonal lifted from C8:C22
ρ1444-40-22-21000-1-11-22-11-110000    orthogonal lifted from C2xS3wrC2
ρ1544-4-2001-220022-21-10000100-1    orthogonal lifted from C2xS3wrC2
ρ1644-42001-2-20022-21-10000-1001    orthogonal lifted from C2xS3wrC2
ρ174442001-2200-2-2-2110000-100-1    orthogonal lifted from S3wrC2
ρ18444-2001-2-200-2-2-21100001001    orthogonal lifted from S3wrC2
ρ194440-2-2-21000111-2-211110000    orthogonal lifted from S3wrC2
ρ204-40000-210003-3-120-3--3--3-30000    complex faithful
ρ214-40000-210003-3-120--3-3-3--30000    complex faithful
ρ224-40000-21000-33-120--3--3-3-30000    complex faithful
ρ234-40000-21000-33-120-3-3--3--30000    complex faithful
ρ248-800002-4000004-2000000000    symplectic faithful, Schur index 2

Permutation representations of C62.12D4
On 24 points - transitive group 24T601
Generators in S24
(1 5)(2 18 11)(3 7)(4 13 20)(6 22 15)(8 9 24)(10 14)(12 16)(17 21)(19 23)
(1 21 10 5 17 14)(2 6)(3 16 19 7 12 23)(4 8)(9 13)(11 15)(18 22)(20 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 8)(3 7)(4 6)(9 11)(12 16)(13 15)(18 24)(19 23)(20 22)

G:=sub<Sym(24)| (1,5)(2,18,11)(3,7)(4,13,20)(6,22,15)(8,9,24)(10,14)(12,16)(17,21)(19,23), (1,21,10,5,17,14)(2,6)(3,16,19,7,12,23)(4,8)(9,13)(11,15)(18,22)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(18,24)(19,23)(20,22)>;

G:=Group( (1,5)(2,18,11)(3,7)(4,13,20)(6,22,15)(8,9,24)(10,14)(12,16)(17,21)(19,23), (1,21,10,5,17,14)(2,6)(3,16,19,7,12,23)(4,8)(9,13)(11,15)(18,22)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(18,24)(19,23)(20,22) );

G=PermutationGroup([[(1,5),(2,18,11),(3,7),(4,13,20),(6,22,15),(8,9,24),(10,14),(12,16),(17,21),(19,23)], [(1,21,10,5,17,14),(2,6),(3,16,19,7,12,23),(4,8),(9,13),(11,15),(18,22),(20,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,8),(3,7),(4,6),(9,11),(12,16),(13,15),(18,24),(19,23),(20,22)]])

G:=TransitiveGroup(24,601);

On 24 points - transitive group 24T603
Generators in S24
(1 14 24 5 10 20)(3 22 12 7 18 16)
(1 5)(2 21 11 6 17 15)(3 7)(4 9 19 8 13 23)(10 14)(12 16)(18 22)(20 24)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)
(2 8)(3 7)(4 6)(9 17)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)

G:=sub<Sym(24)| (1,14,24,5,10,20)(3,22,12,7,18,16), (1,5)(2,21,11,6,17,15)(3,7)(4,9,19,8,13,23)(10,14)(12,16)(18,22)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,17)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)>;

G:=Group( (1,14,24,5,10,20)(3,22,12,7,18,16), (1,5)(2,21,11,6,17,15)(3,7)(4,9,19,8,13,23)(10,14)(12,16)(18,22)(20,24), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24), (2,8)(3,7)(4,6)(9,17)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18) );

G=PermutationGroup([[(1,14,24,5,10,20),(3,22,12,7,18,16)], [(1,5),(2,21,11,6,17,15),(3,7),(4,9,19,8,13,23),(10,14),(12,16),(18,22),(20,24)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24)], [(2,8),(3,7),(4,6),(9,17),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18)]])

G:=TransitiveGroup(24,603);

Matrix representation of C62.12D4 in GL4(F7) generated by

0115
6542
4406
0006
,
2424
4254
0060
0003
,
6435
6630
2566
2253
,
1045
0155
0060
0006
G:=sub<GL(4,GF(7))| [0,6,4,0,1,5,4,0,1,4,0,0,5,2,6,6],[2,4,0,0,4,2,0,0,2,5,6,0,4,4,0,3],[6,6,2,2,4,6,5,2,3,3,6,5,5,0,6,3],[1,0,0,0,0,1,0,0,4,5,6,0,5,5,0,6] >;

C62.12D4 in GAP, Magma, Sage, TeX

C_6^2._{12}D_4
% in TeX

G:=Group("C6^2.12D4");
// GroupNames label

G:=SmallGroup(288,884);
// by ID

G=gap.SmallGroup(288,884);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,141,219,675,346,80,2693,2028,362,797,1203]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=d^2=1,c^4=b^3,a*b=b*a,c*a*c^-1=a^3*b,d*a*d=a^-1,c*b*c^-1=a^2*b^3,b*d=d*b,d*c*d=b^3*c^3>;
// generators/relations

Export

Character table of C62.12D4 in TeX

׿
x
:
Z
F
o
wr
Q
<